

Proyecto : Edificio A N°: 001

Estructura: Nudo N-1 Fecha: 01/01/2025

DISEÑO DE NUDOS VIGA-COLUMNA DE HORMIGÓN ARMADO - ACI 318-19.

1. Características de los materiales

Concreto

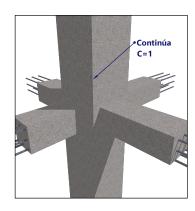
1.1 Resistencia a compresión **f**′_c≔21 **MPa**

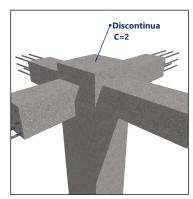
1.2 Factor de concreto liviano $\lambda := 1$

Acero de refuerzo

1.3 Acero de refuerzo $f_v = 420 MPa$

1.4 Acero de refuerzo transversal f_{yt} := 420 *MPa*


1.5 Módulo de elasticidad **E**_s:= 200 **GPa**


1.6 Recubrimiento al acero de estribo r = 4 cm

2. Definición de continuidad de la columna

2.1 Tipo de continuidad

C:= 2

3. Características de la columna

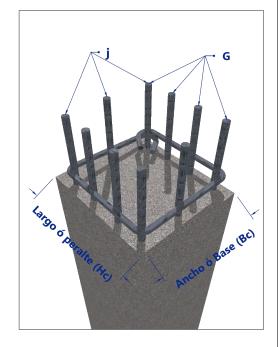
Dimensiones

3.1 Ancho Columna $b_c = 45 \text{ cm}$

3.2 Peralte Columna $h_c = 45$ cm

3.3 Altura $H_c = 3.2 \, m$

Disposición del acero de refuerzo


3.4 Diámetro del refuerzo longitudinal $d_{bc} := \frac{3}{4}$ in

3.5 Diámetro del refuerzo transversal $d_{vc} := \frac{3}{8}$ in

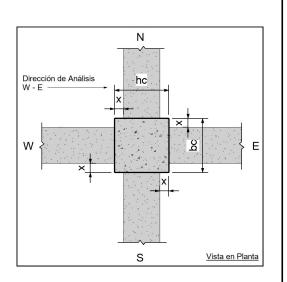
3.6 Número de barras en el eje j **j**≔ 3

3.7 Número de barras en el eje g g = 4

3.8 Máximo espaciamiento de barras con soporte lateral $h_x = 16$ *cm*

p. 1

Proyecto: Edificio A

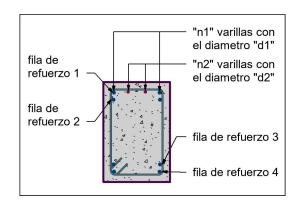

Estructura: Nudo N-1 **Fecha:** 01/01/2025

4. Características de las vigas

Dimensiones

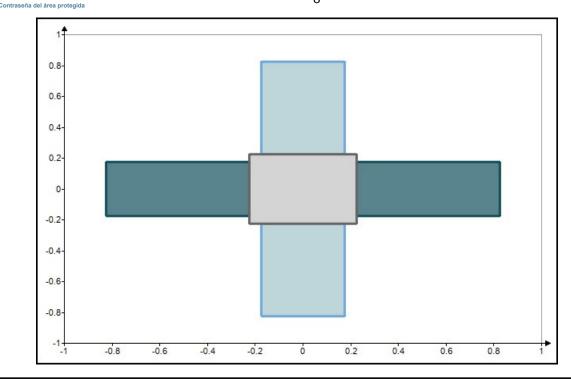
4.1 Base, altura y distancia entre las caras externas de las vigas y la columna.

Viga	b_b	h_b	X
	(<i>cm</i>)	(<i>cm</i>)	(<i>cm</i>)
"W"	35	35	5
"N"	35	35	5
"E"	35	35	5
"S"	35	35	5


N°: 001

p. 2

Disposición del acero de refuerzo en la viga W-E


4.2 Distribución del acero longitudinal

f	d_1	n_1	d_2	<i>n</i> ₂
	(<i>mm</i>)		(<i>mm</i>)	
1	16	2	0	0
2	16	2	0	0
3	0	0	0	0
4	16	3	0	0

4.3 Diámetro del refuerzo longitudinal

$$d_{vv} = \frac{3}{8} in$$

Proyecto: Edificio A

•

N°: 001

p. 3

Estructura: Nudo N-1 Fecha: 01/01/2025

Figura 1. Vista en planta del nudo Viga-Columna.

5. Acero transversal requerido en el nudo

5.1 Fuerza axial máxima presentada en la columna $P_{u} = 400 \text{ kN}$

5.2 Número de barras longitudinales alrededor del perímetro del núcleo confinado que están soportadas por una esquina del estribo cerrado o gancho sísmico. (18.7.5.4) $n_{I} = 10$

5.3 Espaciamiento del acero de refuerzo transversal dentro del nudo viga-columna.

5.4 Máximo Espaciamiento del Refuerzo Transversal dentro del nudo (18.7.5.3) s_{max}=15 cm

5.5 Área de Refuerzo Transversal Requerido dentro del nudo en la dirección W-E (18.7.5.4) **A**_{sh}=1.29 cm²

6. Resistencia al cortante del nudo

6.1 Factor de reducción de la resistencia a cortante $\phi = 0.75$

6.2 Resistencia Requerida (18.8.4.1) $V_u = 677.46 \text{ kN}$

6.3 Resistencia al corte del nudo (18.8.4.2) $\phi V_n = 835.17 \text{ kN}$

 $\phi V_n = 835.17 \text{ kN}$

Revisión = "Cumple"

7. Relación de resistencia a flexión columna-viga

Fuerzas axiales solicitantes

7.1 Fuerza axial que da la menor resistencia a flexión para la columna superior. $P_{u1} = 0 \ kN$

7.2 Fuerza axial que da la menor resistencia a flexión para la columna inferior. $P_{u2} = 500 \text{ kN}$

Resistencias Nominales a Flexión

7.4 Columna Superior $M_{cl} = 0 \text{ kN} \cdot \text{m}$

7.5 Columna Inferior M_{c2} = 268.84 $kN \cdot m$

7.6 Viga Momento Negativo $M_N = 104.96 \text{ kN} \cdot \text{m}$

7.7 Viga Momento Positivo $M_p = 91.65 \text{ kN} \cdot \text{m}$

7.8 Relación de Resistencia a flexión Columna-Viga (18.7.3.2) $R_{CV}=1.37$

Proyecto: Edificio A

Estructura: Nudo N-1 Fecha: 01/01/2025

1.2

R_{CV}= 1.37

Revisión="cumple"

8. Profundidad del nudo y longitudes de desarrollo

Profundidad mínima del nudo en la dirección W-E (18.8.2.3)

h_{min}=0.32 **m**

N°: 001

Longitudes de desarrollo para barras en tensión (18.8.5)

Para barras que terminan en gancho estándar (18.8.5.1)

I_{dh}="no corresponde"

Para barras rectas (18.8.5.3)

 I_d ="no corresponde"

ontraseña del área protegida

Plantilla diseñada por Ingevo® www.ingevo.net