

Estructura: Zapata Z-1 **Fecha:** 01/01/2025

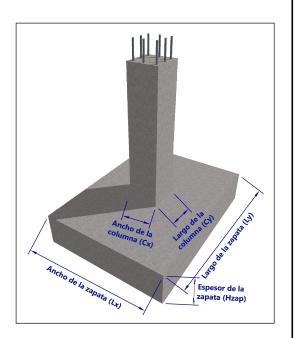
DISEÑO DE ZAPATAS AISLADAS DE HORMIGÓN ARMADO - NORMATIVA ACI 318-19

1. Dimensiones de la zapata

1.1 Lado X de la zapata: $L_x = 2 m$

1.2 Lado Y de la zapata: $L_{\nu} = 2 \, m$

1.3 Espesor de la zapata: $H_{zap} = 30$ cm


1.4 Lado X de la columna: $c_x = 30$ cm

1.5 Lado Y de la columna: $c_v = 30$ cm

1.6 Profundidad del nivel $D_f = 2 m$

de fundación:

2.1 Profundidad de nivel freático: $D_{w} = 0.5 \, m$

2. Características de los materiales

2.1 Resistencia del concreto $f_c = 21 MPa$

2.2 Peso del concreto $\mathbf{y}_{HA} \coloneqq 2400 \frac{\mathbf{kgf}}{\mathbf{m}^3}$

2.3 Esfuerzo de fluencia del acero: $f_v = 420 \text{ } MPa$

2.4 Recubrimiento libre: **r**_{libre}:=75 **mm**

2.5 Diámetro de varillas de refuerzo: $d_b = 12 \text{ mm}$

2.6 Tamaño máximo de los agregados: $d_{agg} = 1$ in

2.7 Peso del relleno: $\gamma_{relleno} := 1800 \frac{kgf}{m^3}$

2.8 Capacidad admisible del suelo: $q_{adm} = 1.8 \frac{kgf}{cm^2}$

3. Cargas que actúan en la zapata

Cargas de servicio: Cargas mayoradas (diseño):

p. 1

3.1 Carga axial P = 48.3 tonnef $P_u = 70$ tonnef

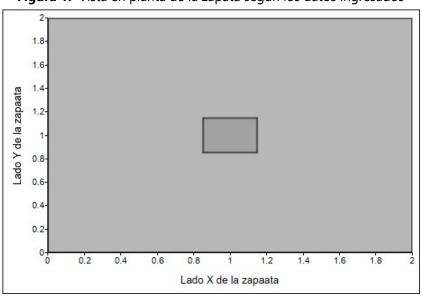
3.2 Momento en X $M_x = -0.75$ tonnef· m $M_{ux} = 1$ tonnef· m

3.3 Momento en Y $M_y := -0.15$ tonnef· m $M_{uy} := -0.1$ tonnef· m

Estructura: Zapata Z-1 Fecha: 01/01/2025

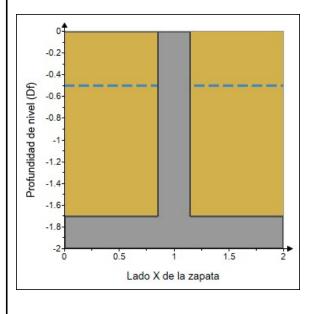
4. Cargas adicionales que actúan sobre el suelo

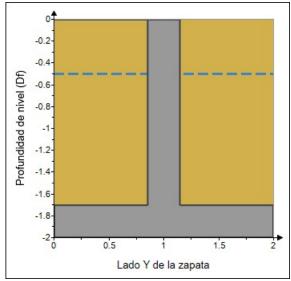
4.1 Peso del concreto:


$$W_{concreto} := c_x \cdot c_y \cdot (D_f - H_{zap}) \cdot \gamma_{HA} + L_x \cdot L_y \cdot H_{zap} \cdot \gamma_{HA} = 31.844 \text{ kN}$$

4.2 Peso del suelo de relleno:

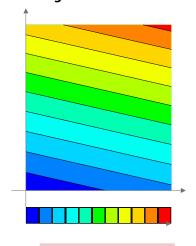
$$W_{suelo} := (L_x \cdot L_y \cdot (D_f - H_{zap}) - c_x \cdot c_y \cdot (D_f - H_{zap})) \cdot \gamma_{relleno} = 117.333 \text{ kN}$$

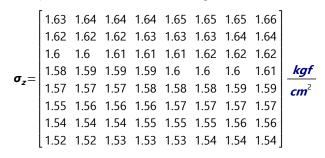

ontraseña del área protegida

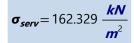

Figura 1. Vista en planta de la zapata según los datos ingresados

Contraseña del área protegida

Figura 2 y 3. Perfil de la zapata según los datos ingresados


Estructura: Zapata Z-1 **Fecha:** 01/01/2025


5. Verificación de la capacidad portante del suelo


5.1 Presión de contacto máximo en estado de servicio

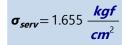
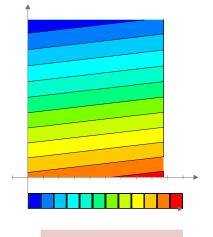
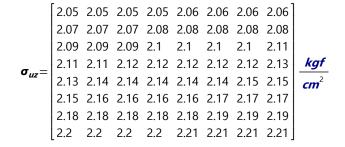

Contraseña del área protegida

Figura 4. Gráfica de contorno de la presión de contacto con cargas de servicio

$$Ratio := \frac{\sigma_{serv}}{q_{adm}} = 0.92$$


Control="Cumple"


5.2 Presión de contacto máximo en estado último de resistencia

[Diseño] := "Pu+Mu+Concreto+Suelo" > <---- Cargas mayoradas

ntraseña del área protegida

Figura 5. Gráfica de contorno de la presión de contacto con cargas últimas

$$\sigma_u = 217 \frac{kN}{m^2}$$

$$\sigma_u = 2.21 \frac{kgf}{cm^2}$$

p. 3

$$\frac{\boldsymbol{Ratio}}{\boldsymbol{q_{adm}}} = 1.229$$

Todos los derechos reservados. Este material es propiedad intelectual de Ingevo®. Se prohíbe su reproducción, distribución o uso comercial sin la autorización previa y por escrito del autor. Para consultas o licencias personalizadas, comuníquese a: ingevo.service@gmail.com

Estructura: Zapata Z-1 Fecha: 01/01/2025

6. Verificación a cortante por punzonamiento

6.1 Factor de reducción de la resistencia (Tabla 21.2.1): $\phi_{\nu} = 0.75$

6.2 Factor de concreto liviano: $\lambda = 1$

6.3 Peralte efectivo
$$d := H_{zap} - r_{libre} - \frac{d_b}{2} = 21.9 \text{ cm}$$
 (debe ser >= 15cm ACI 13.3.1.2) de la zapata:

6.4 Cortante por punzonamiento en las dos direcciones:

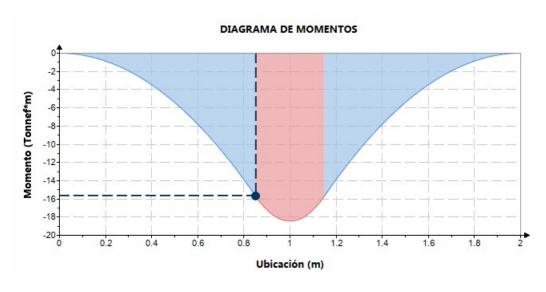
$$V_u = 14.621 \frac{kgf}{cm^2}$$

6.5 Resistencia a corte minorado que aporta el concreto:

$$\phi_{\nu}V_{c}=11.565 \frac{kgf}{cm^{2}}$$

6.6 Ratio de punzonamiento:

$$R_{\nu} := \frac{V_u}{\phi_{\nu} V_c} = 1.26$$


6.7 Verificación de cortante por punzonamiento:

Control="Cumple"

7. Diseño a flexión del acero paralelo al eje "X"

Contraseña del área protegida

Figura 6. Diagrama de momento evaluando el eje X

7.1 Momento de diseño (Calculado en la cara de la columna):

7.2 Verificación de control de falla:

Control= "Controlado por traccion, correcto"

7.3 Factor de reducción de resistencia a flexión (Tabla 22.2.1):

 $\mathbf{d} = 0.9$

Estructura: Zapata Z-1 **Fecha:** 01/01/2025

7.4 Acero requerido para resistir Mu:

 $A_s = 20.015 \text{ cm}^2$

7.5 Acero mínimo a flexión:

 $A_{smin} = 10.8 \text{ cm}^2$

7.6 Acero máximo a flexión:

 $A_{smax} = 58.603 \text{ cm}^2$

7.7 Acero que se debe proporcionar para cumplir com Asmax y Asmin:

$$A_s := min(max(A_{smin}, A_s), A_{smax}) = 20.015$$
 cm²

8. Distribución del acero paralelo al eje "X"

8.1 Acero provisto con el armado:

$$As_{prov} = 20.358 \text{ cm}^2$$

8.2 Distribución del armado de acero en "X":

8.3 Momento resistente con el armado:

$$\phi M_n = 159.309 \text{ kN} \cdot \text{m}$$

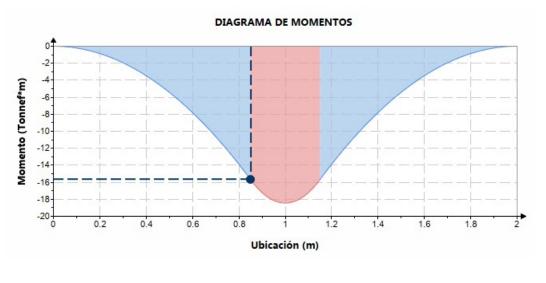
8.4 Verificación del momento resistente con el armado:

Control= "Diseño correcto"

9. Separación del acero paralelo al eje "X"

9.1 Separación mínima:

S_{min}=3.387 **cm**


9.2 Separación máxima:

S_{max}= 29.42 **cm**

10. Diseño a flexión del acero paralelo al eje "Y"

Figura 7. Diagrama de momento evaluando el eje Y

Proyecto: Edificio A

Estructura: Zapata Z-1 Fecha: 01/01/2025

10.1 Momento de diseño (Calculado

en la cara de la columna):

$$M_u = 156.783 \ kN \cdot m$$

10.2 Verificación de control de falla:

Control= "Controlado por traccion, correcto"

N°: 001

10.3 Factor de reducción de resistencia a flexión (Tabla 22.2.1):

10.4 Acero requerido para resistir Mu:

$$A_s = 20.015 \text{ cm}^2$$

10.5 Acero mínimo a flexión:

$$A_{smin} = 10.8 \ cm^2$$

10.6 Acero máximo a flexión:

$$A_{smax} = 58.599 \text{ cm}^2$$

10.7 Acero que se debe proporcionar para cumplir com Asmax y Asmin:

$$A_s := min(max(A_{smin}, A_s), A_{smax}) = 20.015$$
 cm²

11. Distribución del acero paralelo al eje "Y"

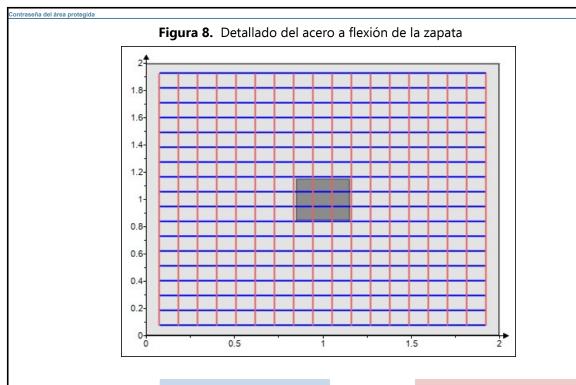
11.1 Acero provisto con el armado:

11.2 Distribución del armado de acero en "X":

11.3 Momento resistente con el armado:

$$\phi M_n = 159.309 \text{ kN} \cdot \text{m}$$

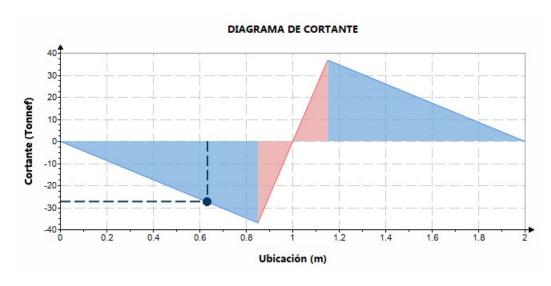
11.4 Verificación del momento resistente con el armado:


12. Separación del acero paralelo al eje "Y"

12.1 Separación mínima:

12.2 Separación máxima:

Estructura: Zapata Z-1 Fecha: 01/01/2025


As_x= "Usar: 18 φ12 c/10 cm"

As_ν= "Usar: 18 φ12 c/10 cm"

12. Diseño a cortante del acero paralelo al eje "X"

traseña del área protegida

Figura 9. Diagrama de cortante evaluando el eje X

- 12.1 Ubicación de la cortante (a una distancia "d" de la cara de la columna):
- 12.2 Fuerza cortante en la sección (a una distancia "d") de la cara de la columna:
- 12.3 Esfuerzo de corte una distancia "d" de la cara de la columna:

$$x_{vd} = 0.631 \ m$$

$$V_u = 27.925 \ tonnef$$

$$v_u = 8.501 \frac{kgf}{cm^2}$$

Proyecto: Edificio A

Estructura: Zapata Z-1

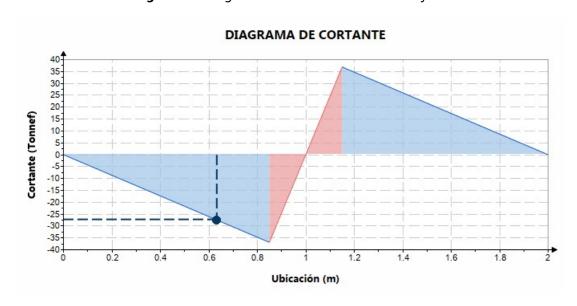
Fecha: 01/01/2025

N°: 001

12.4 Cortante resistente en la sección

$$\phi v_c = 3.846 \frac{kgt}{cm^2}$$

12.5 Ratio en cortante por flexión:


$$R := \frac{v_u}{\phi v_c} = 2.21$$

12.6 Verificación de cortante por punzonamiento:

13. Diseño a cortante del acero paralelo al eje "Y"

Contraseña del área protegida

Figura 10. Diagrama de cortante evaluando el eje Y

- 13.1 Ubicación de la cortante (a una distancia "d" de la cara de la columna):
- **x**_{vd}=0.631 **m**
- 13.2 Fuerza cortante en la sección (a una distancia "d") de la cara de la columna:
- **V**_u= 27.925 *tonnef*

13.3 Esfuerzo de corte una distancia "d" de la cara de la columna:

 $v_u = 8.501 \frac{kgf}{cm^2}$

- 13.4 Cortante resistente en la sección
- $\phi v_c = 3.846 \frac{kgf}{cm^2}$

13.5 Ratio en cortante por flexión:

- $R := \frac{v_u}{dv} = 2.21$
- 13.6 Verificación de cortante por punzonamiento:

Control="Cumple"

Proyecto: Edificio A

Estructura: Zapata Z-1 Fecha: 01/01/2025

N°: 001

14. Longitudes de desarrollo

$$L_{des} := \frac{f_y}{1.1 \cdot \lambda \cdot \sqrt[2]{f_c \cdot MPa}} \cdot \frac{\psi_t \cdot \psi_e \cdot \psi_s \cdot \psi_g}{(2.5)} \cdot d_b = 399.934 \text{ mm}$$

14.1 Longitud de desarrollo:

14.2 Verificación de longitud de desarrollo eje "X":

14.3 Verificación de longitud de desarrollo eje "Y":

15. Ganchos para el desarrollo de barras

En caso de requerir:

15.1 Diámetro de doblado:

15.2Longitud extendida

16. Verificación de tranferencia de esfuerzos columna-zapata

16.1Factor de reducción de resistencia ACI Tabla 21.2.1:

16.2 Carga nominal que puede soportar la zapata

$$\boldsymbol{\phi} \boldsymbol{P}_{\boldsymbol{n}} := \boldsymbol{\phi} \cdot 0.85 \cdot \boldsymbol{f}_{c} \cdot \boldsymbol{A}_{\boldsymbol{q}} = 106.481$$
 tonnef

16.3 Verificación de esfuerzos de carga vertical:

$$Ratio := \frac{P_u}{\phi P_n} = 0.657$$

Control= "Cumple"

Contraseña del área protegida

Plantilla diseñada por Ingevo ${\mathbb R}$ www.ingevo.net